Processing math: 100%

Sunday, January 7, 2024

Problem Set 2.4 Derivatif Trigonometri

catatan :

\frac{d}{dx} sin x~= cos\, x

D_x (cos x)~= - sin\, x

\frac{d}{dx}tanx~=sec^2 x

D_x (cot\, x)~=-csc\, x

\frac{d}{dx} sec x~=sec\, x\, tan\, x 

--------

6. ~y = csc\, x

D_x(csc \, x) = D_x \frac{1}{sin x}

= \frac{sin x\, D_x(1) - (1)\, D_x(sin x)}{sin^2 x}

= \frac{0 - cos\, x}{sin^2 x}~=\frac{-1}{sin x}.\frac{cos\, x}{sin\, x}~= -csc\,x \,cot\, x


10.~y= \frac{sin x + cos x}{tan x}  

\frac{d}{dx}(\frac{sin x + cos x}{tan x})

=\frac{tanx\, D_x (sin x+ cos x) - (sin x+ cos x)\, D_x (tan x)}{tan^2 x}

 = \frac{tanx(cosx-sinx)-(sinx+cosx)sec^2 x}{tan^2x}

= \frac{tanx(cosx-sinx)-(sinx+cosx)sec^2 x}{\frac{sin^2x}{cos^2x}} 

= [sin x - \frac{sin^2 x}{cos x} - \frac{sin x}{cos^2 x} - \frac{1}{cos x}]  : [\frac{sin^2 x}{cos^2 x}]

= [sin x - \frac{sin^2 x}{cos x} - \frac{sin x}{cos^2 x} - \frac{1}{cos x}]  [\frac{cos^2 x}{sin^2 x}]

=\frac{cos^2 x}{sin x} - cos x - \frac{1}{sin x} - \frac{cos x}{sin^2 x}




No comments :

Post a Comment